Software System Safety (SwSS) is the application of rigorous methods and analyses to the software that controls or contributes to system hazards. It typically requires application of system engineering, software engineering, and safety engineering principles, and brings the different engineering disciplines together to focus on how software affects the safety of the system. Software System Safety defines the safety requirements for software developers and assures the application of the required level-of-rigor to implementation and compliance with those requirements.

APT's Software System Safety Process

A proven software safety program, this process is successfully applied to major DoD programs. APT supports customers with AMCOM Regulation 385-17 compliance and presentation to the Software System Safety Technical Review Panel (SSSTRP) for software fielding approval. This process includes the following steps:

Process Steps

2. Identify System Hazards, Identify Software Functions (or Safety-Significant Software Functions)
3. Execute the SwSS Program, Mitigate Software Hazard Causes
4. Monitor Test, Verification & Validation
5. Support Software/ Materiel Release, Assess Hazard Risk, Track Risks to Acceptance

Accomplishments

- Providing software airworthiness input to MIL-HDBK-516 updates
- Developed system safety management plans, system safety program plans
- Identified safety critical software functions and requirements
- Performed independent software safety assessments
- Performed/analyzed hazard tracking data
- Performed software safety analyses
- Prepared software safety metrics plan
- Implemented software safety metrics program

Capabilities

- Plan/Implement software system safety programs
- Perform and evaluate hazard analyses
- Secretariat for software system safety working groups
- Perform independent software safety assessments
- Plan/Implement software safety metrics program
- Conduct software system safety training

Customers

- Integrated Air & Missile Defense (IAMD)
- AMRDEC-SED
- Textron
- United Space Alliance
- Lockheed Martin
- Missile Defense Agency
- iRobot

Programs

- M299 Launcher
- Hellfire
- Griffin™
- UAS Universal Ground Control System
- UAS Ground Based Sense and Avoid System
- NLOS-LS
- WAH-64
- Gladiator UGV
- ABV UGV
- CH-47
- JLENS Aerostat
- Sentinel
- FCS UAS
- JBC-P
1 System Concept Refinement
 Phase – Identify

 Program Initiation/Safety Planning/
 System Assessment
 - Assess the user needs, system capabilities, etc.
 - Develop safety management documentation
 - Assess system and SW development structure and
 processes
 - ID resources required, SOW and RFP inputs
 - Tailor the SS and SwSS programs, document in
 SSMP, SSPP, and SwSSPP
 - Integrate SwSS processes within the SW
 development (SDP, SDD, SEP)
 - Initiate hazard analysis activities

2 Software Requirements & Architecture
 Development Phase – Identify & Assess

 Identify System Hazards and Safety-Significant Software Functions (SSSFs)
 - Identify and track system level hazards
 - Identify SSSFs based upon functional allocation of system
 - Identify SW contributions to identified system hazards
 - Identify software safety requirements based upon SWs
 - Identify SD safety design requirements based upon SD process and guidance
 documentation (JSSSH, STANAG 4404)
 - Perform software criticality analysis
 - Support configuration control process

3 Software Design
 & Code Phase

 Execute the SwSS Program;
 Mitigate SW Hazard Causes
 - Contribute to detailed system
 safety analyses
 - Update detailed SwSS
 analyses
 - Refine SwSFs
 - Derive any additional lower
 level software safety
 requirements
 - Determine verification
 methods for safety
 requirements
 - Ensure and track integration
 of software control measures
 - Perform Level of Rigor
 Analysis
 - Assess effectiveness of
 software hazard controls

4 Software Test, Verification,
 & Validation

 Monitor Test, Verification, and Validation
 - Ensure unit, system and integration test plans
 address SW safety Level of Rigor
 - Support development of safety specific test cases
 - Monitor test and verification activities
 - Review results of test and verification activities
 - Ensure test failures related to safety are
 documented, corrective actions identified and
 implemented, and regression testing performed
 - Update requirements tracking database and
 hazard tracking logs to reflect verified
 requirements

5 Software Release
 & Delivery

 Support Software Release/Assess
 Hazard Risk/Track Risks to
 Acceptance
 - Monitor software release process
 - Review system level hazards,
 controls and verifications
 - Assess adequacy and independence
 of hazard controls
 - Determination of formal final
 and/or residual risks
 - Support development of SSRAs for
 residual risks
 - Prepare for Technical Reviews and
 SW (Materiel) Release
 - Evaluate software issues and
 resolutions after fielding

Iteration &
Feedback